Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.

نویسندگان

  • Wei Hu
  • Keara A Franklin
  • Robert A Sharrock
  • Matthew A Jones
  • Stacey L Harmer
  • J Clark Lagarias
چکیده

In view of the extensive literature on phytochrome mutants in the Ler accession of Arabidopsis, we sought to secure a phytochrome-null line in the same genetic background for comparative studies. Here we report the isolation and phenotypic characterization of phyABCDE quintuple and phyABDE quadruple mutants in the Ler background. Unlike earlier studies, these lines possess a functional allele of FT permitting measurements of photoperiod-dependent flowering behavior. Comparative studies of both classes of mutants establish that phytochromes are dispensable for completion of the Arabidopsis life cycle under red light, despite the lack of a transcriptomic response, and also indicate that phyC is nonfunctional in the absence of other phytochromes. Phytochrome-less plants can produce chlorophyll for photosynthesis under continuous red light, yet require elevated fluence rates for survival. Unexpectedly, our analyses reveal both light-dependent and -independent roles for phytochromes to regulate the Arabidopsis circadian clock. The rapid transition of these mutants from vegetative to reproductive growth, as well as their insensitivity to photoperiod, establish a dual role for phytochromes to arrest and to promote progression of plant development in response to the prevailing light environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE.

The phytochromes are one of the means via which plants obtain information about their immediate environment and the changing seasons. Phytochromes have important roles in developmental events such as the switch to flowering, the timing of which can be crucial for the reproductive success of the plant. Analysis of phyB mutants has revealed that phyB plays a major role in this process. We have re...

متن کامل

Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development.

Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild...

متن کامل

Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis.

The analysis of Arabidopsis mutants deficient in the A, B, D, and E phytochromes has revealed that each of these phytochrome isoforms has both distinct and overlapping roles throughout plant photomorphogenesis. Although overexpression studies of phytochrome C (phyC) have suggested photomorphogenic roles for this receptor, conclusive evidence of function has been lacking as a result of the absen...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Genetic Interactions Between Brassinosteroid-Inactivating P450s and Photomorphogenic Photoreceptors in Arabidopsis thaliana

Plants use light as a source of information via a suite of photomorphogenic photoreceptors to optimize growth in response to their light environment. Growth-promoting hormones such as brassinosteroids also can modulate many of these responses. BAS1 and SOB7 are brassinosteroid-catabolizing P450s in Arabidopsis thaliana that synergistically/redundantly modulate photomorphogenic traits such as fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 4  شماره 

صفحات  -

تاریخ انتشار 2013